

Manufacturability Assessment Knowledge-Based Evaluation

MAKE

MRL Working Group Meeting - July, 26, 2016 Tonya McCall, Larry Dalton, and JR Burt

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

MISSISSIPPI STATE UNIVERSITY™ CENTER FOR ADVANCED VEHICULAR SYSTEMS EXTENSION

"ERS buys down acquisition risk"

Dr. Jeff Holland, ERDC Director & ERS COI Lead

ERS-NDIA Briefing, March 24-26, 2015

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

ERS "Manufacturability" Module

Larry Dalton, Module Lead – Larry.G.Dalton@usace.army.mil, (601) 634-2847

Purpose

To understand various aspects of designs manufacturability by developing an assessment methodology targeted for use assessing system designs for the DoD lifecycle acquisition process. This methodology will assist design teams with assessing and improving the manufacturability of a product design.

Products/Capability to be Delivered

ERS Manufacturability Module

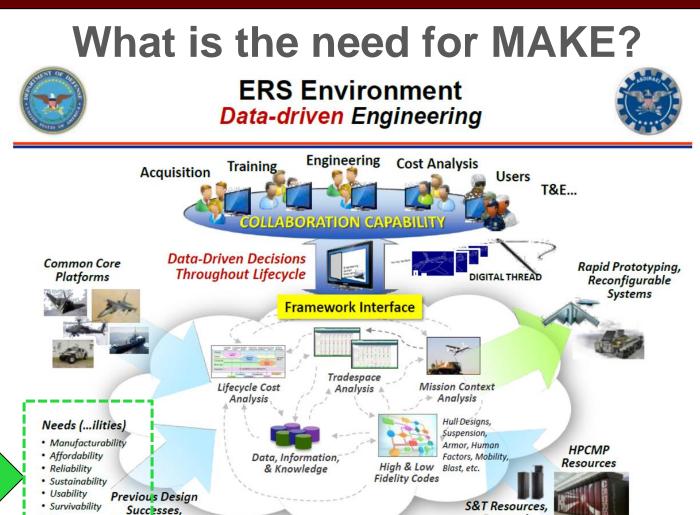
- Manufacturability Metrics The manufacturability metric(s) that assess the difficulty to manufacture products . The metric(s will consider the technology readiness level (TRL) as well as the manufacturing readiness level (MRL) to rate the product on a scale determined by subject matter experts
- Updated ERS manufacturability Roadmap phases, products, and efforts of the development process to synchronize with ERS tradespace module/tool development efforts
- **Development of the manufacturability assessment methodology** provide descriptions of anchoring factors for quantitative and qualitative metrics to include scalability, risk, etc.
- Submit and publish a research conference paper as well as a conference presentation (e.g. IEEE, MORSS, NDIA, etc.) papers to communities of interest to gain user/community feedback and advertising ERS capabilities
- Collaboration with and feedback from DMDI Institute (DMDII), Additive Manufacturing Engineering (AME), and Model Based Engineering (MBE) – to leverage community expertise for metric development and review as well as module exposure
- Verified Manufacturability Module for ERS demos & presentations Manufacturability module for use by ERS for usability studies, verification, and inclusion in the ERS tool set

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

MISSISSIPPI STATE

UNIVERSITY



· Etc.

ENGINEERED RESILIENT SYSTEMS (ERS)

ERDC

Lessons-learned

Mission Context Resilience Lifecycle Cost Tradespace

Research

MISSISSIPPI STATE

UNIVERSITY

Collaboration Effort

ERDC Engineer Research and Development Center

MRAP, Navistar Maxx Pro, West Point, MS Production Facility, over 6,000 vehicles produced, 2007 - 2009.

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

Project Team "Working Group"

- A Diverse Research Team with over 180 combined years of industry experience (Reps from CAVS-E, ISER, ERDC, and Outside Consultants).
- Areas of Experience:

Aerospace Automotive

- all-terrain vehicles
- consumer road vehicles
- military vehicles
 Consumer & Personal Care Products
 Healthcare
 Electronics
 Electronic Test
 Equipment
 Elevators
 Industrial Parts

Logistics Medical Devices Musical Instruments Networks Office Furniture Plant Equipment Quality Assurance Residential Appliances Shipbuilding Transportation Utility **Functional Areas:**

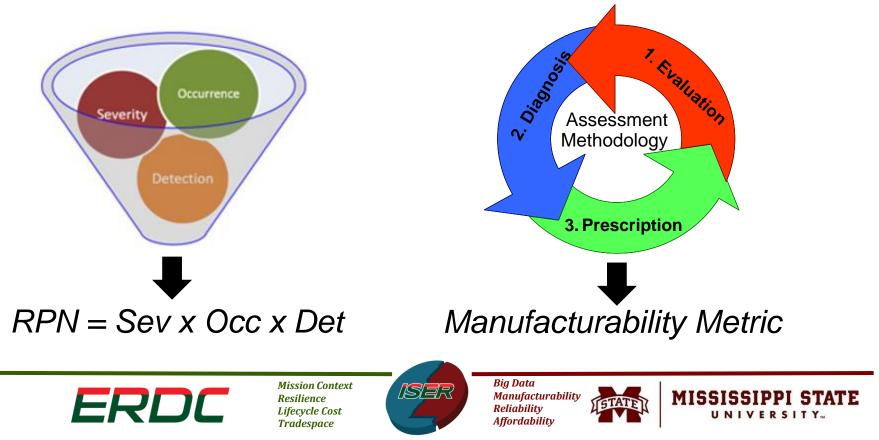
Product Design Mfg. Process Engineering Quality Engineering Mathematics Computer Science Systems Engineering

ERDC

Mission Context Resilience Lifecycle Cost Tradespace

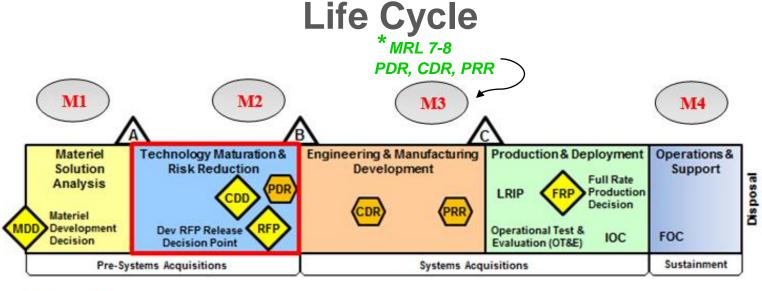
Big Data Manufacturability Reliability Affordability

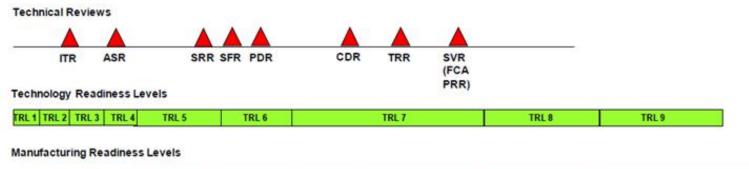
MISSISSIPPI STATE


UNIVERSITY_m

Original MAKE Concept

Originally thought of as having similarities to FMEA


- Unit-less metric
- Continuous improvement cycle

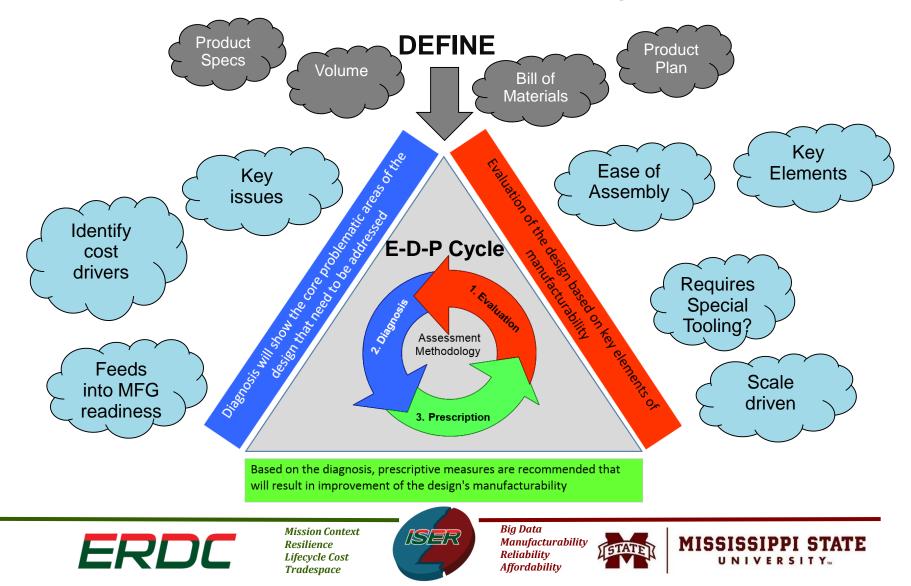


MISSISSIPPI STATE UNIVERSITY CENTER FOR ADVANCED VEHICULAR SYSTEMS EXTENSION

Four "Potential" Metrics Throughout the Product

1000 0753 13 13 13 23						
MRL1 MRL2 MRL3 MRL4	MRL 5	MRL 6	MRL 7	MRL 8	MRL9	MRL 10
mile if mile of mile of mile i		mile v	and the state of t	intrie v	initia o	

Mission Context Resilience Lifecycle Cost **Tradespace**


Big Data Manufacturability Reliability Affordability

Framework for the Manufacturability Assessment

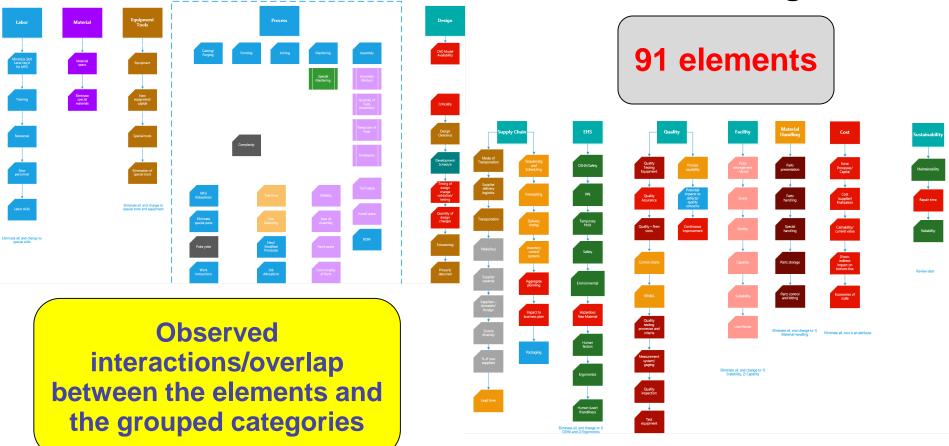
Development of Key Elements

What is "Manufacturability"?

- Describes the relative ease with which a product or component can be manufactured.
- The inherent difficulty of manufacturing a product to design specifications has both direct and indirect cost implications.
- Major criteria such as process costs, time to produce, production volumes, supply chain issues and product quality collectively determine manufacturability,
- As the team generally discussed the key components of manufacturability, a brainstorming activity was performed to identify the specific elements that impact it.

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability



MISSISS

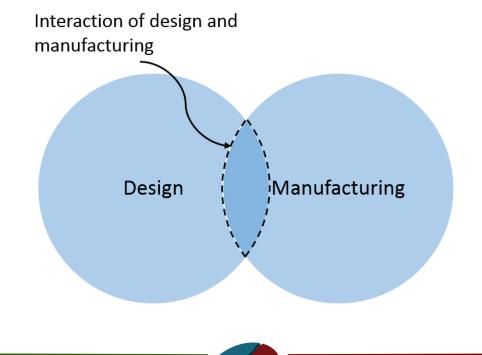
Affinity Diagram Exercise

Grouped ideas were translated into the following:

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

MISSISSIP


UNIVERSITY

STATE

Development of Key Elements

The assessor's intent would be to <u>understand the impact</u> of characteristics of the "design" on particular areas of "manufacturing"?

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

Manufacturability Interaction Matrix

- 15 x 9 matrix showing the <u>interactions</u> (X) between the "aspects of design" and the "aspects of manufacturing".
- What is the impact of the "aspects of design" on the "aspects of manufacturing"? Ex. What is the impact of "ease of assembly" on the "process"?

Aspect of Design Aspect of Mfg	Design	Material	Product Dimensioning	Special Tools	Part Geometry	Special Skills	Ease of Assembly	Reliability	Process Capability	Capacity and Scalability	Ergonomics	Material Handling, Transporting, and Packaging	Strategic Sourcing	Quality testing and equipment	Maintainability
Process	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
Supply Chain	Х	Х			Х	Х				Х	Х	Х		Х	X
Equipment/Tools	Χ	Х	Х		Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	X
Facility	Х			Х	Х					Х	Х	Х	Х	Х	Χ
Labor	Х						Х		Х	Х	Х	Х	Х		
Quality	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Cost	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
EHS	Х	Х		Х	Х	Х	Х			Х		Х	Х	Х	
Sustainability	Х	Х		Х	Х		Х				Х			Х	

ERDC

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

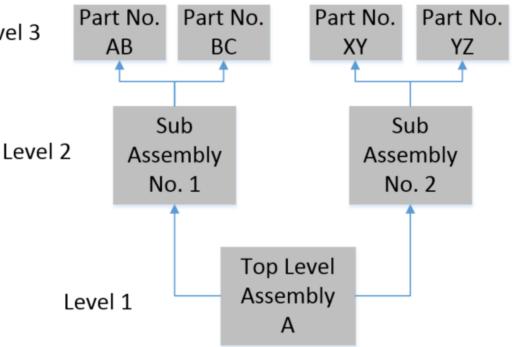
Evaluation Phase

- Version 2.0 Manufacturability Interaction Matrix
 - Understand impact of the design on particular aspects of manufacturing
 - Example "What is the impact of material on the manufacturing process?"

Aspect of Design Aspects of Mfg (AM)	Mater	hat product and harupa	tuins on part	metry
Process	x	х	х	
Process Capability	Х	Х	Х	
Supply Chain	Х	Х	Х	
Equipment/Tools	Х	Х	Х	
Facility	Х	Х	Х	
Labor	Х	Х	Х	
Quality	Х	Х	Х	
EHS	X	Х	Х	
Ergonomics	Х	Х	Х	
Capacity and Scalability	x	х	х	
Maintainability	Х	Х	Х	

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability



Structured Evaluation

- In the inverted BOM, evaluation of Level 3 lowest level part number(s) will occur first.
- Once all parts at lowest level evaluated, assembly level will be evaluated.

Inverted Bill of Material (BOM)

Assessment will be based on an Inverted BOM approach.

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

MISSISS

Evaluation – Rating Scales

Rating system* based on the following criteria:

Color	Rating	Description
Red	1 - 60	High concern significant issues, stop and evaluate
Yellow		Medium concern, some issues (additional build time, extra resources, and special tooling, etc. may be required), proceed with caution
Green	86 - 100	Low concern, very few issues, proceed

* Based on prior work with a large defense contractor – needs to be further validated

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

MISSISSIPPI

UNIVERSITY...

Diagnosis Phase

 Dive deeper to understand the impact of the design on particular aspects of manufacturing.

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

Prescription Phase of Study

- Utilize a taxonomy of best practices.
- SME input is provided to mitigate risk & facilitate improvement in the manufacturability scores. conce
- Communicate the SME proffered recommendations based on the assessed effort and risk to the operation.

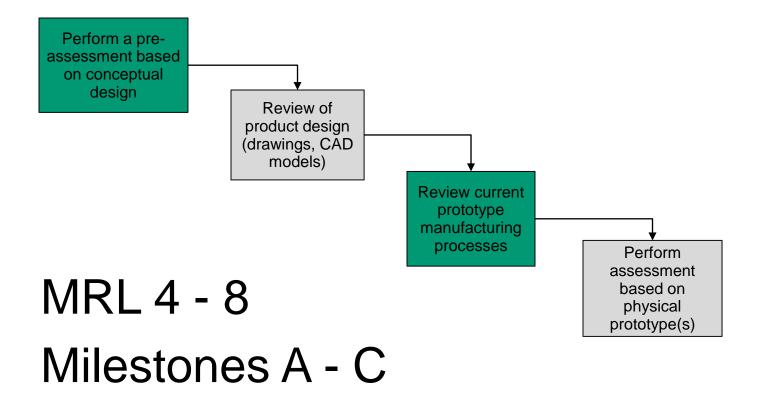
rn	High Concern Low Effort	High Concern High Effort
	Low Concern Low Effort	Low Concern High Effort

Effort

MISSISSI

NIVERSITY

Mission Context Resilience Lifecycle Cost Tradespace



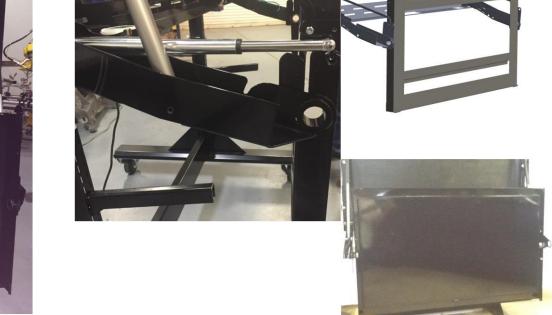
Big Data Manufacturability Reliability Affordability

Case Study Evaluation Progression

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

MISSISSIPPI STATE


UNIVERSITY

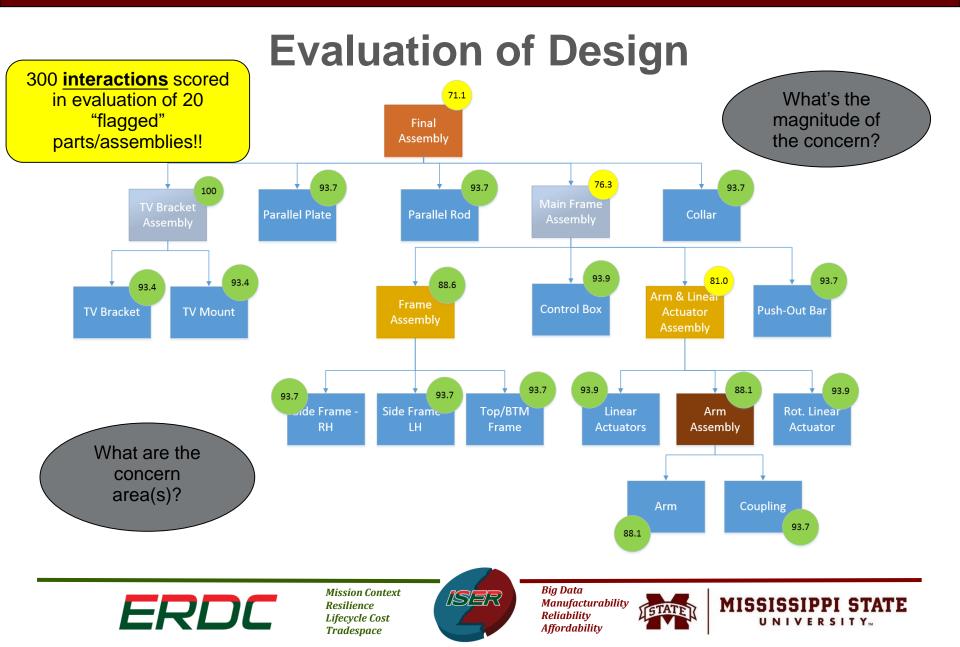
1st Case Study

RTVM - Rotatable TV Mount

Components: Sheet Metal, Electrical/Electronic, Electro-Mechanical actuators, Springs, Fasteners, etc.

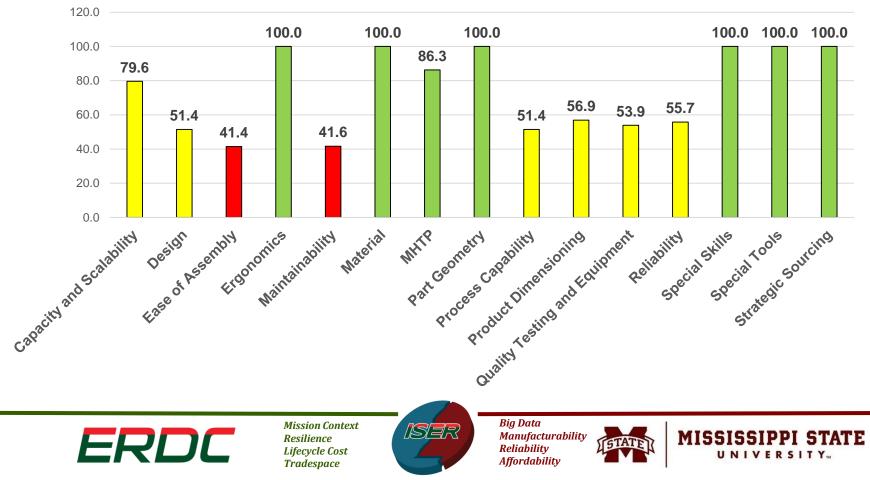
Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability



MISSISSIPPI STATE

UNIVERSITY...


MISSISSIPPI STATE UNIVERSITY CENTER FOR ADVANCED VEHICULAR SYSTEMS EXTENSION

Diagnosis: Concern areas within Mfg

Final Assembly Process Step - Impact of Aspects of Design

Prescriptive: Concerns & Recommendations

Element	Score	Concern	Recommendation			
Product Dimensioning		 quality capability. Block tolerance high – three decimal places = +/- .015. Unnecessary tight tolerances are costly. Drawing dimensioned to three decimal places which 	 Need to confirm decision that this will be a welded assembly (as built for prototype) instead 			
Quality Testing and Equipment	63.0	Tight drawing tolerance (as drawn). Does not match manufacturing capability or quality measurement capability. Need to be able to measure and confirm squareness of the finished assembly.	Update all drawings to show +/-0.031" tolerance for all two decimal point dimensions. Ensure there is quality check (measure and confirm) for squareness of the frame assembly.			
Capacity and Scalability		Volume greater than 100/month would cause issues 1) Increase labor force would be required 2) Additional equipment, fixtures, jigs, etc. would be needed to support the increased volume (ex. Laser, turret punch)	 Discuss with future assembly house (Leonard) on capability for future expansion(2018 and beyond = volume >100/month) Manufacturing set up would be more batch queue, so focus needs to be on part storage capacity. Review finished goods inventory and order shipment policy. 			
ER		Mission Context Resilience Lifecycle Cost Big Data Manufacturab Reliability				

Affordability

Tradespace

MISSISSIPPI STATE UNIVERSITY™ CENTER FOR ADVANCED VEHICULAR SYSTEMS EXTENSION

"Live" MAKE Demo

Mr. J.R. Burt

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

MISSISSIPPI STATE UNIVERSITY™ CENTER FOR ADVANCED VEHICULAR SYSTEMS EXTENSION

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

